Ternary analogues of Lie and Malcev algebras
نویسندگان
چکیده
منابع مشابه
Ternary analogues of Lie and Malcev algebras
We consider two analogues of associativity for ternary algebras: total and partial associativity. Using the corresponding ternary associators, we define ternary analogues of alternative and assosymmetric algebras. On any ternary algebra the alternating sum [a, b, c] = abc − acb − bac + bca + cab − cba (the ternary analogue of the Lie bracket) defines a structure of an anticommutative ternary al...
متن کاملOn Derivation Algebras of Malcev Algebras and Lie Triple Systems
W. H. Davenport has shown that the derivation algebra 3)(4) of a semisimple Malcev algebra A of characteristic 0 acts completely reducibly on A. The purpose of the present note is to characterize those Malcev algebras which have such derivation algebras as those whose radical is central and to obtain the same result for Lie triple systems. Analogous results are known to hold for standard and al...
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کاملMalcev Algebras and Combinatorial Structures
In this work, we design an algorithmic method to associate combinatorial structures with finite-dimensional Malcev algebras. In addition to its theoretical study, we have performed the implementation of procedures to construct the digraph associated with a given Malcev algebra (if its associated combinatorial structure is a digraph) and, conversely, a second procedure to test if a given digraph...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2006
ISSN: 0024-3795
DOI: 10.1016/j.laa.2005.09.004